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Abstract—An important and often overlooked aspect of par-
ticle filtering methods is the estimation of unknown static
parameters. A simple approach for addressing this problem is to
augment the unknown static parameters as auxiliary states that
are jointly estimated with the time-varying parameters of interest.
This can be impractical, especially when the system of interest is
high-dimensional. Multiple particle filtering (MPF) methods were
introduced to try to overcome the curse of dimensionality by using
a “divide and conquer” approach, where the vector of unknowns
is partitioned into a set of subvectors, each estimated by a
separate particle filter. Each particle filter weighs its own particles
by using predictions and estimates communicated from the other
filters. Currently, there is no principled way to implement MPF
methods where the particle filters share unknown parameters or
states. In this work, we propose a fusion strategy to allow for
the sharing of unknown static parameters in the MPF setting.
Specifically, we study the systems which are separable in states
and observations. It is proved that optimal Bayesian fusion can
be obtained for state-space models with non-interacting states
and observations. Simulations are performed to show that MPF
with fusion strategy can provide more accurate estimates within
fewer time steps comparing to existing algorithms.

Index Terms—Information fusion, Monte Carlo methods,
Bayesian inference, Particle filtering

I. INTRODUCTION

Particle filtering (PF) is a Monte Carlo methodology that
is used for dynamic state estimation in nonlinear and non-
Gaussian probabilistic systems [1], [2]. The methodology is
based on a classical statistical technique called importance
sampling [3], whereby a set of samples (called particles) and
weights are used to form a discrete random measure that
approximates the posterior distribution of the unknown states
given the observations. While other filtering methodologies
that deal with nonlinear systems have been proposed (e.g.,
extended Kalman filtering (EKF) [4] or unscented Kalman
filtering (UKF) [5]), PF methods can handle arbitrary distribu-
tional assumptions about the system of interest. This flexibility
makes PF powerful for dealing with highly nonlinear and non-
Gaussian systems.

Despite the success of PF in many practical applications
[6]–[8], the performance of the method heavily depends on a
number of factors. For instance, the presence of unknown static
parameters in the probabilistic system of interest introduces
some difficulties, since the framework for PF methods is tra-
ditionally setup for online state estimation [9]. One approach

to dealing with this problem is to use Rao-Blackwellization to
analytically integrate out the unknown static parameters [10].
Unfortunately, this can only be done for certain mathematical
models. In the more general scenario, the typical approach
is to augment the static parameter as an unknown state in
the probabilistic system. One methodology, for instance, is
to model the dynamics of the unknown static parameter as a
Gaussian random walk with small noise variance [11]. Another
approach uses a kernel-based approach [9], whereby the pos-
terior distribution of the unknown parameters is approximated
with a mixture of Gaussians, whose parameters are updated
in each time instant. Another methodology, called density-
assisted particle filtering (DAPF) [12], approximates the joint
posterior of the unknown latent states and static parameters
using a parameteric density. Special cases of this approach
are Gaussian particle filtering (GPF) [13] and Gaussian sum
particle filtering (GSPF) [14].

In addition to the challenge of dealing with static parame-
ters, since PF is a Monte Carlo methodology, it also suffers
from the curse of dimensionality, which causes the perfor-
mance of the method to deteriorate as the dimension of the
unknown state vector increases [15]. One way to alleviate the
problems posed by the curse of dimensionality is to consider
filtering methodologies which partition the state-space of the
unknown states. Multiple particle filtering (MPF) [16], for
instance, uses the so-called divide and conquer approach to
address the curse of dimensionality. In MPF, the full state
vector is partitioned into substates, each dealt with by a
separate particle filter. The weighting of the particles is carried
out by the exchange of information between filters, which can
be done in a variety of ways [17], [18]. It is still unclear how
one would also deal with unknown static parameters in the
MPF framework, since information about the static parameters
may be required across all filters.

In this paper, we propose a novel approach based on
Bayesian fusion to tackle the problem of shared unknown
static parameters in MPF when the states and observations in
the state-space model are non-interacting. We provide numer-
ical simulation results to show that the MPF framework with
fusion outperforms the standard particle filtering (SPF) and
DAPF especially in high dimensional space. The estimation
also converges faster compared to MPF without information
fusion.IC
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II. PROBLEM FORMULATION

Let xt ∈ Rdx denote a dx-dimensional latent state vector,
yt ∈ Rdy a dy-dimensional measurement vector, and t a time-
index. We consider a state-space model, where the system
evolves according to the following set of equations

xt = f(xt−1,ut,θ), (1)
yt = g(xt,vt,θ), (2)

where f(·) is the system transition function, ut is the state
noise that has a distribution p(ut), g(·) is the measurement
function, vt is the measurement noise that has a distribution
p(vt), and θ ∈ Rdθ is a dθ-dimensional unknown static
parameter vector that parameterizes both f(·) and g(·).

For a given time t, our goal is to jointly estimate the latent
state xt and the static parameter vector θ given the set of
measurements y1:t ≜ {y1,y2, . . . ,yt} under the Bayesian
paradigm. This amounts to determining the joint posterior
distribution of xt and θ

p(xt,θ|y1:t) = p(xt|θ,y1:t)p(θ|y1:t). (3)

The distribution p(xt|θ,y1:t) represents the filtering distribu-
tion under the assumption that the static parameter vector is
known, while p(θ|y1:t) is the posterior distribution of θ.

III. MULTIPLE PARTICLE FILTER WITH SHARED
UNKNOWN PARAMETERS

In this section, we propose a novel MPF algorithm that
fuses information across filters in cases that filters share
parameters for systems where the states and observations are
non-interacting.

Let the state vector xt be partitioned as xt =
[x⊺

1,t,x
⊺
2,t, . . . ,x

⊺
K,t]

⊺ and let the unknown static parameter
vector θ be partitioned as θ = [θ⊺

1,ℓ,θ
⊺
2,ℓ, . . . ,θ

⊺
K,ℓ,θ

⊺
g ]

⊺.
Since the states and observations are non-interacting, after
partitioning, the kth subsystem of the state-space model can
be represented via the following set of equations:

xk,t = fk(xk,t−1,uk,t,θk,ℓ,θg), k = 1, . . . ,K (4)
yk,t = gk(xk,t,vk,t,θk,ℓ,θg), k = 1, . . . ,K, (5)

where fk(·) and gk(·) are the system transition function and
measurement function local to the kth subsystem, θk,ℓ stands
for the local parameter vector in the kth subsystem, and θg is
the global parameter vector. In this type of system, the states
and observations contained in each subsystem are independent
of the states and observations from all other subsystems when
the global parameter θg is known.

In MPF, K particle filters are used to jointly estimate
the unknowns xt and θ, where each filter tracks one of the
subsystems above. In this setting, we consider that the kth filter
jointly tracks zk,t ≜ {xk,t,θk,ℓ,θg}. At each time instant t,
the kth particle filter represents an approximation of the joint

Algorithm 1 Fusion Strategy for Multiple Particle Filtering

Input: {z(n)1,t , w
(n)
1,t }

N1
n=1, . . . , {z

(n)
K,t, w

(n)
K,t}

NK
n=1

Output: {z̃(n)1,t }
N1
n=1, . . . , {z̃

(n)
K,t}

NK
n=1

1: for k = 1, . . . ,K do
2: Approximate p(zk,t|y1:t) with a parametric density

p̃(zk,t;βk,t) by estimating the parameters βk,t using
the set of samples and weights {z(n)k,t , w

(n)
k,t }

Nk
n=1.

3: end for
4: Obtain q(θg|y1:t) by fusing the marginal distributions by

(16)
5: for k = 1, . . . ,K do
6: Sample Nk particles from the fused marginal distribu-

tion by (19)
7: for n = 1, . . . , Nk do
8: Sample a particle from the conditional distribution by

(20)
9: Set z̃(n)k,t =

{
x̃
(n)
k,t , θ̃

(n)

k,ℓ , θ̃
(n,k)

g

}
.

10: end for
11: end for

posterior distribution p(zk,t|y1:t) using a set of particles and
weights

p̂(zk,t|y1:t) =

Nk∑
n=1

w
(n)
k,t δ(z

(n)
k,t − zk,t), (6)

where z
(n)
k,t ≜ {x(n)

k,t ,θ
(n)
k,ℓ ,θ

(n,k)
g } is the nth particle of the kth

filter. Using the chain rule of probability theory, we can write
the posterior distribution p(zk,t|y1:t) as

p(zk,t|y1:t) = p(xk,t,θk,ℓ|θg,y1:t)p(θg|y1:t). (7)

This essentially means that each filter has an approximation
of the marginal posterior of the global parameters p(θg|y1:t).
We denote the approximation of p(θ|y1:t) according to the
kth filter as p̂k(θ|y1:t) and it is given by

p̂k(θg|y1:t) =

Nk∑
n=1

w
(n)
k,t δ(θg − θ(n,k)

g ). (8)

Since each filter has its own approximation to p(θg|y1:t), we
would like to fuse these approximations to obtain a better/more
accurate distribution q(θg|y1:t). Given the fused distribution,
we can then update the kth filter’s full posterior accordingly
by replacing p(θg|y1:t) in (7) with q(θg|y1:t):

q(zk,t|y1:t) = p(xk,t,θk,ℓ|θg,y1:t)q(θg|y1:t). (9)

The update rule in (9) can be implemented as a resampling
step in the MPF framework. This is shown in Algorithm 1.

The idea of Algorithm 1 is to use the set of samples and
weights from each of the particle filters and to return to
each of those particle filters a set of resampled particles. The
resampling of the particles is based on fusing the information
from the filters. In order to accomplish this fusion in a
principled way, we approximate the current filtering density
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of each particle filter using a parametric density

p̃(zk,t;βk,t) ≈ p(zk,t|y1:t), (10)

where the parameters βk,t are estimated using set of samples
and weights from the kth particle filter, {z(n)k,t , w

(n)
k,t }

Nk
n=1. The

idea is to choose the parametric density p̃(zk,t;βk,t) from a
family of probability distributions such that:

1) The marginal density p̃(θg|βk,t) can be obtained ana-
lytically.

2) The conditional density p̃(xk,t,θk,ℓ|θ̃g;βk,t) can be
obtained analytically.

One parametric family of distributions that is known to satisfy
the above requirements is the Gaussian distribution. In this
case βk,t ≜ {µk,t,Σk,t}, where µk,t and Σk,t correspond to
the mean and covariance matrix of that Gaussian.

After, estimating the parameters βk,t, we marginalize the
approximate filtering densities in order to obtain K different
approximations to the posterior distribution of the global
parameters θg . The goal is to fuse these K approximate
posteriors into a single probability distribution. This fused
distribution q(θg|y1:t) is obtained by using a fusion function
h : PK → P [19]:

q(θg|y1:t) = h
(
p̃(θg;β1,t), . . . , p̃(θg;βK,t)

)
, (11)

where P denotes the set of all valid probability density
functions for the random vector θg .

In terms of choosing the fusion function for the system
represented by (4)-(5), the fusion function which allows for
optimal Bayesian fusion can be obtained. We refer to optimal
Bayesian fusion as a fusion rule that can fuse the local
posterior distributions of the global parameter vectors (given
their latest local measurement) into the posterior distribution
of the global parameter vector given all measurements up
to current time instant. To get the approximation of global
posterior distribution p(θg|y1:t), we combine all the approxi-
mations of the local posterior distributions p(θg|yk,t,y1:t−1)
learned from each filter and the global posterior distribution
p(θg|y1:t−1) learned from last time step.

At a particular time instant t, we can write the marginal
posterior distribution of θg given y1:t as

p(θg|y1:t) ∝ p(yt|θg,y1:t−1)p(θg|y1:t−1). (12)

In a state-space model described by (4)-(5), the likelihood
p(yt|θg,y1:t−1) can be proven to be the product of likelihoods
of all subsystems

p(yt|θg,y1:t−1) =

K∏
k=1

p(yk,t|θg,y1:t−1). (13)

Applying Bayes’ theorem, we can rewrite the likelihood of
kth filter as

p(yk,t|θg,y1:t−1) ∝
p(θg|yk,t,y1:t−1)

p(θg|y1:t−1)
. (14)

Thus, we can get the optimal Bayesian fusion

p(θg|y1:t) ∝
∏K

k=1 p(θg|yk,t,y1:t−1)

p(θg|y1:t−1)K−1
. (15)

The result in (15) is rather intuitive and has a counter-
part for static (time-invariant) systems. Here, the posterior
distribution p(θg|y1:t−1) from last time instant serves as a
prior distribution for θg at time instant t. After each filter
processes its local measurements to obtain an updated pos-
terior p(θg|yk,t,y1:t−1) based on the prior p(θg|y1:t−1). A
correction needs to be made since each filter utilized the
prior and a simple multiplication of the K posteriors would
count the prior multiple times. This correction is made by
multiplying the K posteriors and dividing out the prior K−1
times. Then the marginal posterior q(θg|y1:t) in (11) can be
obtained:

q(θg|y1:t) =

∏K
k=1 p̃(θg;βk,t)

q(θg|y1:t−1)K−1
. (16)

When we assume the distributions are all Gaussian distribu-
tions, we can get the mean and covariance matrix of the fused
distribution q(θg|y1:t) = N (µq,t,Σq,t):

µq,t = Σq,t

( K∑
k=1

Σ−1
k,tµk,t − (K − 1)Σ−1

q,t−1µq,t−1

)
, (17)

Σq,t =
( K∑

k=1

Σ−1
k,t − (K − 1)Σ−1

q,t−1

)−1

. (18)

In obtaining the fused marginal posterior q(θg|y1:t), we can
now communicate this density to each of the particle filters so
that they may use it in their resampling step. For each filter,
a set of particles is drawn from the fused marginal posterior

θ̃
(n,k)

g ∼ q(θg|y1:t), n = 1, . . . , Nk. (19)

We then use the conditional distribution p̃(xk,t,θk,ℓ|θ̃g;βk,t)
to sample corresponding substates and local parameters:{

x̃
(n)
k,t , θ̃

(n)

k,ℓ

}
∼ p̃(xk,t,θk,ℓ|θ̃

(n,k)

g ;βk,t), n = 1, . . . , Nk.

(20)
Using this strategy, each particle filter obtains a set of resam-
pled particles {z̃(n)k,t }

Nk
n=1, where z̃

(n)
k,t ≜ {x̃(n)

k,t , θ̃
(n)

k,ℓ , θ̃
(n,k)

g }.

IV. SIMULATION RESULTS

In this section, we present numerical results with different
scaled systems. Four different algorithms are tested: SPF with
a Gaussian random walk model [11]; DAPF [12]; MPF-1,
where each partition performs as a SPF and the global estimate
is given by the mean of estimates from each partition; MPF-2,
which is the proposed method in this work.

For simplicity, we assume that there are no local unknown
parameters. Specifically, we consider a system which can be
described by the following transition function and measure-
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Fig. 1: Averaged MSE of parameter and state estimates with
dx = 10 and dθg

= 2.

ment function:

xi,t =
θ1

1 + e−xi,t−1+θ5
+ θ2 + ui,t, i = 1, . . . , dx (21)

yi,t = θ3xi,t + θ4 + vi,t, i = 1, . . . , dx (22)

where dx = 10, ui,t ∼ N (0, σ2
ui
) and vi,t ∼ N (0, σ2

vi) are
independent and identically distributed zero-mean Gaussian
noise with variance σ2

ui
= 2 and σ2

vi = 1, respectively. θg =
[θ1, θ2, θ3, θ4, θ5]

⊺ = [2,−2, 2,−2, 3]⊺ is a global parameter
vector. We test all algorithms with different dθg

, where the
first dθg

parameters are assumed to be unknown parameters
to estimate, while the rest are known. For further clarification,
when dθg = j, we assume that only θ1, . . . , θj is an unknown
parameter that will be estimated and θj+1, . . . , θ5 are known.

The number of particles used in the simulation is 100dθg

per state dimension. In other words, when dθg = 2, we
estimate 2 unknown parameters. The number of particles in
SPF and DAPF are both N = 2000. In MPF, with the
number of partitions being K = 5, each particle filter utilizes
Nk = 400 particles. The initial particles are drawn as follows:
x
(n)
0 ∼ N (0, σ2

ui
I), θg ∼ N (1, 2I).

Fig. 1 shows the average mean square errors (MSEs) of
the unknown static parameters and the latent states calculated
from 100 realizations of each algorithm with dθg = 2. In each
realization, the system iterates T = 50 times. It is obvious that
MPF methods outperform the single particle filter methods
(SPF and DAPF) and give lower MSEs on both state and
parameter estimation. Though the two MPF methods seem to
land to a comparable result after 50 iterations, the MPF-2 in
this work coverges faster than the MPF-1 which fuses only
the final estimates by taking the mean.

The effect of dθg can be found in Fig. 2. Since θg cannot
be partitioned in any of these methods, when the dimensions
of unknown static parameters grow larger, all methods will
perform worse and provide higher MSEs. However, with the
fusion strategy, the performance of our work degrades less than
other methods. Specifically, our work can provide a satisfying
estimate within only a few time steps as shown in Figure 2a.

The system tested above is a relatively smaller system with
dx = 10, which PFs can still handle. However, due to the
curse of dimensionality, PFs cannot even provide reasonable

(a) t = 5 (b) t = 50

Fig. 2: Averaged MSE of the static parameter estimates under
different dθg

and t with dx = 10.

(a)

(b) (c)

Fig. 3: Averaged MSE of parameter and state estimates with
dx = 100 and dθg

= 1. Figure (c) shows the invisible MSEs
in Figure (b) due to the scale.

estimates when the scale of the system becomes large. We
provide the following results for the same system with dx =
100 and dθg

= 1. The number of particles per dimension
remains the same. With more state dimensions, we choose
K = 50. Still, 100 realizations are run and the MSEs are
recorded in Fig. 3. In such large system, the SPF and DAPF
are not able to estimate the latent states properly.

V. CONCLUSION

In this paper we propose a novel fusion strategy used
in MPF framework. It allows for the sharing of unknown
static parameters for state-space models that can be partitioned
into independent subsystems. We prove that optimal Bayesian
fusion can be obtained in this case and the information fusion
can be implemented as a resampling step in MPF. Simulations
are run to show that the algorithm give better estimation
for both latent states and unknown parameters comparing to
the SPF, DAPF, and MPF without fusion strategy. Since the
fusion function is only given for independent subsystems, it
remains as future work to derive the approximation of best
fusion results in models where the states and observations are
interacting.
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